A β(IV)-spectrin/CaMKII signaling complex is essential for membrane excitability in mice.
نویسندگان
چکیده
Ion channel function is fundamental to the existence of life. In metazoans, the coordinate activities of voltage-gated Na(+) channels underlie cellular excitability and control neuronal communication, cardiac excitation-contraction coupling, and skeletal muscle function. However, despite decades of research and linkage of Na(+) channel dysfunction with arrhythmia, epilepsy, and myotonia, little progress has been made toward understanding the fundamental processes that regulate this family of proteins. Here, we have identified β(IV)-spectrin as a multifunctional regulatory platform for Na(+) channels in mice. We found that β(IV)-spectrin targeted critical structural and regulatory proteins to excitable membranes in the heart and brain. Animal models harboring mutant β(IV)-spectrin alleles displayed aberrant cellular excitability and whole animal physiology. Moreover, we identified a regulatory mechanism for Na(+) channels, via direct phosphorylation by β(IV)-spectrin-targeted calcium/calmodulin-dependent kinase II (CaMKII). Collectively, our data define an unexpected but indispensable molecular platform that determines membrane excitability in the mouse heart and brain.
منابع مشابه
βIV-Spectrin and CaMKII facilitate Kir6.2 regulation in pancreatic beta cells.
Identified over a dozen years ago in the brain and pancreatic islet, βIV-spectrin is critical for the local organization of protein complexes throughout the nervous system. βIV-Spectrin targets ion channels and adapter proteins to axon initial segments and nodes of Ranvier in neurons, and βIV-spectrin dysfunction underlies ataxia and early death in mice. Despite advances in βIV-spectrin researc...
متن کاملP26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory
Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...
متن کاملAnkyrin-G coordinates intercalated disc signaling platform to regulate cardiac excitability in vivo.
RATIONALE Nav1.5 (SCN5A) is the primary cardiac voltage-gated Nav channel. Nav1.5 is critical for cardiac excitability and conduction, and human SCN5A mutations cause sinus node dysfunction, atrial fibrillation, conductional abnormalities, and ventricular arrhythmias. Further, defects in Nav1.5 regulation are linked with malignant arrhythmias associated with human heart failure. Consequently, t...
متن کاملPosterior cerebellar Purkinje cells in an SCA5/SPARCA1 mouse model are especially vulnerable to the synergistic effect of loss of β-III spectrin and GLAST
Clinical phenotypes of spinocerebellar ataxia type-5 (SCA5) and spectrin-associated autosomal recessive cerebellar ataxia type-1 (SPARCA1) are mirrored in mice lacking β-III spectrin (β-III-/-). One function of β-III spectrin is the stabilization of the Purkinje cell-specific glutamate transporter EAAT4 at the plasma membrane. In β-III-/- mice EAAT4 levels are reduced from an early age. In cont...
متن کاملTwo-Pore K+ Channel TREK-1 Regulates Sinoatrial Node Membrane Excitability.
BACKGROUND Two-pore K(+) channels have emerged as potential targets to selectively regulate cardiac cell membrane excitability; however, lack of specific inhibitors and relevant animal models has impeded the effort to understand the role of 2-pore K(+) channels in the heart and their potential as a therapeutic target. The objective of this study was to determine the role of mechanosensitive 2-p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of clinical investigation
دوره 120 10 شماره
صفحات -
تاریخ انتشار 2010